Boundary-Aware FACT: Explicit Boundary Supervision for Frame-Action Cross-Attention

SICS-155 Surgical Phase Recognition Challenge - Team Atlas Vision

Yasser El Jarida Youssef Iraqi Loubna Mekouar 2025

College of Computing, University Mohammed VI Polytechnic Benguerir, Morocco

SICS-155 Challenge Overview

Challenge Details

SICS-155: 155 videos, 19 phases, 100 train / 15 test

Key Challenge: Temporal boundary ambiguity at phase transitions

- ▶ Over-segmentation: short spurious segments
- Boundary blurring between adjacent actions
- Need for stable phase segmentation

Team AtlasVision Approach

Strategy: Boundary-aware training for better temporal consistency

Base Model: FACT with I3D features

Innovation: Auxiliary boundary head for transition prediction

Figure 1: MICCAI 2025

rigure 2. Sies phases

Previous Methods & Validation Results

MS-TCN++ with custom features

VideoMAE-v2 features:

- ▶ Pretrain: Cataract-1K + OphNet (2024), then finetune on Cataract101
- ► Segmenter: MS-TCN++ (MSTCN2-style temporal convs)
- Outcome: lower Acc/F1/Edit; unstable early training

I3D features + MS-TCN++: improved but < 80% Acc

Surgformer (HTA head)

- Microscopic + macroscopic temporal attention for long-range dependencies
- ▶ Acc 82% on validation, but poor F1/Edit

Motivation for FACT

Combine convolutional efficiency with transformer long-range modeling via cross-attention

Notes

- VideoMAE-v2 + MS-TCN++ unstable from early epochs
- ► I3D + MS-TCN++ improved stability but < 80% Acc
- Surgformer: long-range modeling, but weak F1/Edit

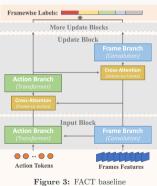
Approach & FACT Baseline

High-level approach

- Backbone features: I3D
- Temporal model: FACT (frame CNN branch + action-token transformer)
- Information exchange: bidirectional cross-attention between branches
- Inference: merge token-derived posteriors with frame logits via a learned weight

How it works (simple view)

- Frame branch (convolutions): captures local motion/appearance and produces per-frame class scores efficiently.
- Action branch (tokens + transformer): a small set of learnable action tokens model long-range structure and segment-level context.
- Cross-attention (both directions): tokens attend to frames to align with segments; frames attend to tokens to receive high-level guidance.
- Final prediction: combine guidance from tokens with the frame branch for stable, accurate framewise labels



Boundary-aware Extension (Architecture & Loss)

Loss formulation

Boundary detection (BCE):

$$\mathcal{L}_{\text{BCE}} = \frac{1}{T} \sum_{t} \left(-y_b(t) \log p_b(t) - (1 - y_b(t)) \log(1 - p_b(t)) \right)$$

$$\mathbf{Boundary\text{-}weighted} \ \mathbf{TV:} \ \mathcal{L}_{\mathrm{TV}}^{\mathrm{w}} = \frac{1}{T-1} \sum_{t=1}^{T-1} (1-p_b(t))^{\gamma} \ \| \log \mathbf{p}_{t+1} - \log \mathbf{p}_{t} \|_2^2$$

 $\textbf{Combined per-block:} \; \mathcal{L}_{block} = \mathcal{L}_{frame} + \mathcal{L}_{token} + \mathcal{L}_{attn} + \alpha \, \mathcal{L}_{TV}^W + \beta \, \mathcal{L}_{BCE}$

Intuition

- Stabilize interiors; allow sharp changes at true transitions
- ► Gate smoothing by $(1 p_b(t))^{\gamma}$
- No inference cost or parameter changes

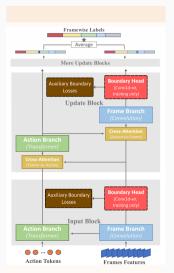


Figure 4: Boundary-aware head placement

Experimental Setup

Dataset & Features

 ${\bf SICS\text{-}155\text{:}}\ 100\ \mathrm{train}\ /\ 15\ \mathrm{test}\ \mathrm{videos},\ 19\ \mathrm{phases}$

- ▶ 960×540 resolution @ 30 FPS
- ▶ I3D features: 1024-D spatiotemporal embeddings
- \triangleright Extracted at stride sr = 3

Training Strategy

Warm Start: Vanilla FACT baseline

- ▶ Load shared weights, initialize boundary heads
- ► Learning rate: 1 × 10⁻⁴
- Merge weight: w = 0.50

 $\mathbf{Hyperparameter} \ \mathbf{Search:} \ \mathbf{W\&B} \ \mathbf{sweeps}$

- ▶ Boundary loss weight: {1.0, 1.5, 2.0}
- ► TV exponent: {2.0, 3.0}
- ► Smoothing weight: {1.0, 2.5, 5.0}

Hardware

- Single NVIDIA RTX 6000 Ada Generation GPU
- Efficient training with warm initialization

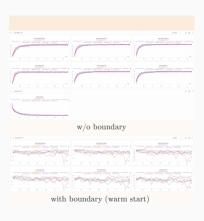
Hyperparameter Tuning (W&B Sweeps)

Search spaces

- \triangleright β (boundary BCE): $\{1.0, 1.5, 2.0\}$
- $ightharpoonup \gamma$ (TV exponent): $\{2.0, 3.0\}$
- ightharpoonup α (smoothing): $\{1.0, 2.5, 5.0\}$
- Frame feature stride sr: $\{1, 3, 5\}$
- ▶ Merge weight w: fixed 0.50; LR 1 × 10⁻⁴; M = 36

Selected configuration

$$\beta = 1.0, \ \gamma = 2.0, \ \alpha = 5.0, \ sr = 3, \ w = 0.50, \ M = 36$$



Results & Performance (Validation & Test)

Test Set Results

SICS-155 Challenge Submission:

- ► Accuracy: 82% (Rank #2 on leaderboard)
- Consistent performance across test videos
- Boundary-aware variant showed improvements

Validation Set (Public)

Method	Acc (%)	F1@0.50	\mathbf{Edit}
FACT	82.8	77.1	86.9
+ boundary	84.1	78.6	86.3

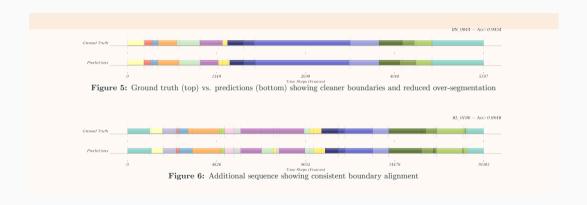
${\bf Qualitative\ Improvements}$

- Cleaner phase transitions
- Fewer short spurious segments
- ▶ Better boundary adherence

Key Insights

- Boundary awareness helps temporal consistency
- Minimal computational overhead
- Warm start crucial for stability

Qualitative Results



Ablation Study & Analysis

Component Analysis

Boundary Head Impact:

- ▶ BCE loss alone: marginal improvement
- Weighted TV loss alone: moderate improvement
- \triangleright Combined: best performance (+1.3% accuracy)

Training Dynamics:

- ▶ Warm start critical for stable convergence
- \triangleright Learning rate 1×10^{-4} optimal
- Higher rates cause training instability

Hyperparameter Sensitivity

- $\gamma = 2.0$ optimal for TV exponent
- $\beta = 1.0$ best boundary loss weight
- Merge weight w = 0.50 most stable

Computational Cost

Training:

- ▶ +1 Conv1D per block
- Negligible parameter increase

Inference:

- Identical to baseline
- No runtime overhead

Limitations

- Single dataset (SICS-155)
- ▶ I3D features only
- Binary boundary supervision

Conclusion & Future Work

Key Contributions

Methodological:

- Strategic boundary head integration into FACT
- Boundary-weighted temporal smoothing loss
- ► Training-only overhead design

Results:

- ▶ 82% accuracy on test set (Rank #2)
- Qualitative reduction in over-segmentation
- Consistent gains with proper warm start

Clinical Impact

- Better phase boundary detection for surgical training
- ► Improved quality assurance tools
- Cost-effective for resource-limited settings

Future Work

- Alternative boundary integration strategies
- Cross-dataset generalization
- Real-time deployment optimization
- Clinical validation trials

Boundary-aware training improves temporal consistency at no computational cost.

Thank You

Yasser El Jarida UM6P College of Computing

 ${\tt yasser.eljarida@um6p.ma}$

Youssef Iraqi
UM6P College of
Computing
youssef.iraqi@um6p.ma

Loubna Mekouar
UM6P College of
Computing
loubna.mekouar@um6p.ma

Slides: https://yasser.sh/talks/miccai_sics155/