Yasser El Jarida

PhD Student (Predoctoral Year), AI in Healthcare UM6P College of Computing, Ben Guerir Morocco

→ +212-667314575

yasser.eljarida@um6p.ma
GitHub Profile
LinkedIn Profile
yasser.sh

EDUCATION

•PhD in Computer Science Medical AI

UM6P College of Computing, Ben Guerir

Currently enrolled

•Computer Engineering: Big Data and Cloud Computing

2021 - 2024

2024 - Present

ENSET, Mohammedia

•Preparatory Classes Mathematics and Physics (CPGE)

2019 - 2021

Ibn Abdoun High School, Khouribga

•Baccalaureate in Mathematical Sciences A

2018 - 2019

Abou El Kacem Ezzayani High School, Khenifra

EXPERIENCE

•Researcher October 2024 - Present

UM6P College of Computing, Ben Guerir, Morocco

On-site

Transformers, Cross-Attention, PyTorch, ECG Analysis, Surgical Phase Detection, Synthetic Data

- Conducting advanced research on AI applications in healthcare, focusing on cardiology (ECG analysis) and surgical workflow optimization through intelligent video analysis.
- Designed and implemented a Boundary-Aware FACT (Frame–Action Cross-Attention Temporal) model for surgical phase segmentation, achieving $2^{\rm nd}$ place at the MICCAI 2025 OMNIA SICS155 Challenge.
- Introduced a lightweight boundary supervision mechanism and a boundary-weighted temporal smoothing loss, improving segmentation accuracy by +1.3% and F1-score by +1.5 while keeping inference unchanged.
- Explored Transformer-based architectures (FACT, SurgFormer, TimeSformer, VideoMAE-v2) for temporal understanding and phase recognition in surgical videos.
- Collaborated closely with clinical experts to ensure that AI solutions are interpretable, efficient, and aligned with surgical workflow needs.
- Previously developed synthetic datasets and CNN-based regression models (ResNet50, EfficientNet-B0, InceptionV3) for instant particle size distribution estimation, published at the CVPR 2025 SynData4CV Workshop (A* conference).

•Data Science Internship

February - August 2024

 $Green\ Energy\ Park\ (UM6P/IRESEN),\ Ben\ Guerir,\ Morocco$

On-site

Python, YOLOv8, SAM, CVAT, DeepFill v2, ResNet50, Streamlit

- Developed a comprehensive computer vision pipeline integrating YOLOv8 and SAM for the detection, segmentation, and reflectivity assessment of CSP mirrors.
- Improved data quality using advanced image inpainting techniques (DeepFill v2), achieving a reflectivity prediction accuracy (R²) of 94% with ResNet50.
- Deployed an intuitive web-based dashboard using Streamlit for interactive model evaluation and result visualization.

•Data Science Internship

June - July 2023

Devoteam, Rabat, Morocco

On-site

Python, TensorFlow, CNNs, YOLOv8

- Implemented computer vision-based violence detection models using YOLOv8, optimizing accuracy through extensive hyperparameter tuning and performance validation.
- Analyzed results extensively, providing detailed insights into precision, recall, and F1-score for strategic model improvements.

PUBLICATIONS

•Instant Particle Size Distribution Measurement Using CNNs Trained on Synthetic Data

2025

Research & Projects

•Instant Particle Size Distribution Prediction with CNNs (Published)

CVPR Workshop 2025 (SynData4CV)

Blender, CNN, ResNet50, EfficientNet, Synthetic Data

- Created a realistic, high-quality synthetic dataset using Blender to train CNN models (ResNet50, EfficientNet-B0, InceptionV3) for predicting particle size distributions (PSD).
- Evaluated the effectiveness of synthetic data for accurately solving PSD prediction tasks, demonstrating the potential of using generated data to replace or supplement real-world samples.

•Boundary-Aware FACT for Surgical Phase Recognition

MICCAI 2025 OMNIA SICS challenge

Transformers, Cross-Attention, PyTorch, I3D, FACT, Temporal Modeling

- Designed a boundary-aware extension of the FACT (Frame-Action Cross-Attention Temporal) model for surgical phase segmentation, introducing auxiliary boundary supervision to improve temporal consistency and boundary precision.
- Achieved 2nd place (82% test accuracy) on the official SICS-155 leaderboard, outperforming standard Transformer and MS-TCN baselines.
- Implemented an efficient boundary head and a boundary-weighted total-variation loss that reduced over-segmentation and sharpened phase transitions without inference overhead.
- Conducted extensive hyperparameter sweeps and ablation studies demonstrating consistent accuracy and F1-score improvements (+1.3% accuracy, +1.5 F1).

• Foundation Model for ECG Analysis (Current)

UM6P College of Computing, Ongoing

Vision Transformers, CNN, PyTorch, Signal Processing

- Developing robust and generalizable foundation models based on Vision Transformer architectures for detailed ECG data interpretation and precise cardiac diagnostics.
- Addressing key challenges in ECG analysis, including handling noisy signals, detection of irregular cardiac rhythms, and enhancing model interpretability to improve clinical reliability.

CERTIFICATIONS

•Human Research: Data or Specimens Only Research (Basic Course)

CITI Program / MIT Affiliates

•Fundamentals of Accelerated Computing with CUDA Python

NVIDIA

•Neural Networks and Deep Learning

DeepLearning.ai

•Supervised Machine Learning: Regression and Classification

DeepLearning.ai

TECHNICAL SKILLS & INTERESTS

Programming Languages: Python, C, C++, Java

Libraries/Frameworks: PyTorch, TensorFlow, OpenCV, Pandas, NumPy, Scikit-learn

Tools/Platforms: Git, GitHub, Docker

Cloud/Database Technologies: MongoDB, MySQL, Google Cloud Platform

Research Interests: Machine Learning, Deep Learning, Computer Vision, Healthcare AI Soft Skills: Problem Solving, Self-learning, Adaptability, Effective Communication

Languages: English (Advanced), French (Advanced), Arabic (Native)

ACHIEVEMENTS

•2 nd Place at MICCAI 2025 OMNIA SICS155 Surgical Phase Recognition Challenge	2025
•Accepted Paper at CVPR 2025 Workshop (SynData4CV)	2025
•1st Place, Hackathon: Blockchain and AI at the Service of Health	2023